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TECHNICATL NOTE NO. 1436

STRESSES IN AND GENERAL INSTABILITY
OF MONOCOQUE CYLINDERS WITH CUTOUTS
VI - CATCULATION OF THE BUCKLING LOAD OF CYLINDERS
WITH SIDE CUTOUT SUBJECTED TO PURE BENDING

By N. J. Hoff, Bertram Klein, and Bruno A. Boley

SUMMARY

A straln-energy theory was developed for the calculation of the
buckling load in general instablility of cilrcular relnforced monocoque
cylinders having a slde cutout and subjected to pure bending. The
theory was appllied to two meries of specimens, each contalnlng three .
cylinders, which were tested and reported in part IV in this program
at the Polytechnic Institute of Brooklyn Aeronautical Iaboratories.
The average deviation between theoretical and experimental buckling
load was 27.1 percent for the first series and 34.L percent for the
second .

INTRODUCTION

In the present report, the last report of a series of six (see
references 1 to 5) dealing with monocoque cylinders with cutouts, the
calculation of the buckling load of a cylinder which has a.slde cutout
and falls in general lngtebility when subjected to pure bending is
undertaken. General instability 1s defined as the simultaneous buckling
of the circumferential and longitudinal reinforcing elements of a mono-
cogue cylinder together with the sheet attached to them. As the cal-
culations given herein follow closely those presented in reference 3,
it ghould be consulted for the development of some of the fundamental
connections used in the present report.

The first step in the strain-energy calculation was the assumption
of a buckled shape. This was done after examination of the deflection
patterns observed in the tests described 1in reference 4. The stringer

bordering the cutout on the compression side always showed the greatest

deflections, and its distorted shape was very simllar to a full slne
wave. TFor the specimens having & symmetric cutout (reference 1) the
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wave length was only slightly greater than the length of the cutout, but
for the specimens with side cutout the length of the wave varied and was
observed to be definltely greater. For this reason, in the present report
the wave length 1 +was considered a parameter, the value of which had to
be determined from the requirement that the buckling load be a minimum.
This procedure differs from that adopted in the calculation of the general
ingtablility of the cylinders with symmetric cutout in which the wave
length wae agsumed to be a known conatant, namaly the length of the
cutout.

In the circumferential direction the deflected shape at buckling
is repremented by the first-seven terms of a Fourler expansion. The
clrcumferential coordinate is measured from the edge of the cutout, and
the length of the interval in which the Fourier series 1s defined is
considered as one of the parameters of the problem. The boundary con-
ditions at the end of the interval determine four of the seven coeffi-
clents of the series, and one of them 1s indeterminate as in all buckling
problems. The remalning two coefficients, as well as the wave-length _
Derameter, are calculated from the requirement that the buckling load be
e minimum,.

The assumptions made regarding the buckling pattern in the circum-
ferential direction are identical for the cylinders having a symmetric
cutout and for those having a side cutout. For cylinders having a side
cutout, however, additional conslderations were necessary because the
deflections extended into the complete portions of the cylinder. It-
wag declded to amsume that the expressions developed for the buckled
shape in the cutout portion were also valid for the complete portions
of the cylinder; this assumption,in effect, means that the restraint
due to the continulty of rings and sheet in the complete portions is
neglected. The Jjustlification for this essumption 1s the resulting com-
rarative simpliclty of the calculations, as well as the observation that
the deflections alwaye were considerably smaller in the complete portions
than in the cutout portion.

The following strain-energy quantities were considered: radial
and tangential bending, as well as torsion of thestringers,bending of
the rings in thelr plane; and shear in the sheet. The extensional
strain energy in the sheet was taken into account by adding an effective
width of sheet to the stringers and the rings. In the calculation of
the external work 1t was assumed that the applied moment caused a linear
distribution. of the strain in the cutout portion of the cylinder. The
forces corresponding to these strains were applied to the stringers at
the ends of the wave, and the sum of the products of these forces and
the dlgplacements of thelr points of application was taken as the
external work. i

The buckling load was calculated from the requiremeht that the
atraln emergy corresponding to the transition Pfrom the unbuckled into
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the buckled shape be equal to the work done by the applied loads. The
minimum value of the buckling load was found by essuming the clrcum-
ferential wave length to be equal to the length of some integral number
of stringer flelds, and the axlal wave length, mome integral number of
ring flelds. The values of the two undetermlined Fourier coefficlents
were calculated to mske the buckling load a minimum. Thisg minimum value
of the buckling load then was determined and compared with other minimum
values obtained on the basls of different cholces of clrcumferential and
axial wave lengths. Between 6 and 10 combinations were investigated for
each of the slx cylinders - three of which ars shown in figure 1 - in
order to find the absolute minimum value of the buckling load.

The investigation was conducted at the Polytechnic Institute of
Brooklyn Asronautical Laboratorles under the sponsorship and with the
financial assistance of the Natlonal Advisory Commlttee for Aeronautics.
For hils substantlal share in the numerical work the authors are indebted
to Mr. John G. Pulos. '

SYMBOLS

a,ao,al,&e,a3 Fourier coefficlents

A ) croas-sectional area of stringer plus 1tas effective width

of sheet
b,bl,bg,b3 Fourler coefficlents
C geoms tric factor in torsional rigidity GC

da width of panel measured along circumfererice
E Young's modulus
G shear modulus
Go ghear modulus of sheet covering at zero compressive
Lload
Geftf effective shear modulus
i index indlcating position along circumference
I moment of lnertia
I, moment of inertla of ring cross mectlon and 1ts effective

width of sheet for bending in its own plane
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moment of inertia of astringer cross section end its
effective width of sheet for bending in radial
direction (about a tangential axis)

moment of inertia of stringer orocass smection and its
effective width of sheet for bending in tangential
direction (about a radial axis)

index indicating position along axial direction

trigonometric functions of P, n, &, and 'b. |

length of wave in exial direction

distance btetween adjacent rings

nuiber of ring fields involved in failure

- applied bending moment; function of n, a, and b appearing

in strain energy of bending in rings

parameter defining wave length in circumferentiel
direction

rolynomial functions of a and 'b ]
lﬁa.ximwn éom;pressive fofce acting at buckling
force carried by the ith stringer at buckling
function of x appearing in shear strain energy

radius of cylinder

function of ¢, n, e, and b eppearing in shear strein
energy

number of stringer fieldes involved in failure
total number of stringers in cylinder

thickness of sheet covering

strain energy

bending etrain energy stored in ﬂngé

shear strain energy stored in sheet

radiel 'bending strain energy stored 1n ;f;ingem

tangen:bia.]_. bending strain energy stored in stj,ringe‘rs'

o
I!iII i

-'i

!
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Uy : torsion straln energy stored in stringers,

2w effective width of sheet

Wy radlal dlsplacement of a point on a ring or a stringer

Wy tangentlal displacement of a point on a ring or a strlnger

W work done by applied forces

x axial coordinate

o angle subtended by cutout

Qo s U, coefficients used in calculation of shear strain in a
panel due to displacements of its corners

v4 shear straln

(o] . shift of neutral axis from horizontal dlameter

€ normel strein In a stringer

€max meximum compressive strain at 'buékling -

P angular coordlnate

THE DEFLECTED SHAPE

The shape of the bulge at buckling 1s determined mainly by the
radlial deflectlions. The followlng expression was chosen to represent the
radlal deflections:

W = agky s1n? (x /L)

sine(rcz/L)(a.o + &1 COB NP + &, COS 2nQ + a3 Cos 3nP
+ b, sin 09 + by sin 209 + 'b3 sin 3nq)) (1)
provided that

0<9< (xn/n) : (1a)

Wp =0 (1v)
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when ¢ > (x/n)
The notation and the sign conventlons are shown in figure 2. .o
The deformatlons of the ringe were assumed to be inextensionsl.

The condltion of Iinextensionality is L

Wy = - dwt/dcp (2)

Equationg (1} and (2) determine the tangential deflectioms as follows:

Wy = sine{mc/L) [- 259 - (al/n) sin nop - (3.2/‘2::1) gin 2np - (a3/3n) gin 3np

+ (bl/n) cos n® + (ba/én) cos 2nP +-(b3/3n> cos 3nqﬂ (3)
provided that _ ' . -

0< @< (xt/n) _ (32)
Integration of the bracketed expression in the righit-hand member of
equation (1) yields an integration constarnt that was omltted from the o -
bracketed expression in the right-hand member of-equation (3). The

physical meaning of thls conetent 1s a rigld-body rotation of the ring. -
Morecver, : : : : ’

Wy =0 ' (31)
when @ > (x/n)

I1f it is requlred that there be s smooth transition between the . .
bulge and the nondlstorted part of the cylinder at © = (ﬁ/n), the fol- .
lowing conditione must be satisgfled: L

The tangential diéplacement must—vanish, that is, _
vy =0 . (ka)
when ¢ = (x/n) o o ) o
The radlasl displacement must vanish, that is,

w, =0 ' (k)
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when @ = (xn/n)

There must be no abrupt change In the directlion of the tangent,
that 1s,

w39 = 0 (he)
when ¢ = (xn/n)

There must be no abrupt change in the curvature, that 1s,

3w, 30 = 0 (La)

when @ = (x/n)

The four conditions (equations (4e) to(4d) establish four relations
betwesen the Fourler coefficlents and make it poselible to express any four
coefflclents by means of the remaining three. If a, 845 and 'bl are

retained as the basic paremsters, the followlng four equatlons are
obtalnsd:

(8/5)ay - (9/5)e,

N

o
i

3 = (3/5)ay - (4/5)a,
(5)

o'
\V]
n

(16/5)p, + (18/5) ma i

o
[

3 = (9/5)b1 + (12/5)1'@.0 J

With the notation

]
o

(8‘1'/&0)
and { (6)

(bl/ ao)

and after substitution of equation (5) in equations (1) and (3),

)

V. = agky sinz(n'x/L) (7N
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where

k, = {l +acoenp+ (lL.6a - 1.8) cos 2np + (0.6a - 0.8) cos 3n¢p

+ b sin o9 + (3.2 + 3.67) sin 2np + (1.8 + 2.4n) sin 3nq>] (72)

and
W = agky s1n® (rex /L) (8)
where '
= (l/n)[-n¢ - a sin np - (1/2) (1. 6a - 1.8) sin 2np )
- (1/3) (0. 6a - 0. 8)sin 309 + b cos nY + (1/2)(3 2b + 3 6n) cos 2np
+ (1/3) (1.8 + 2.4x)cos 3mp] (8e)
Equations (7) and (8) are valid, provided that
0< o< (nt/n) | (8b)

When ¢ 1s greater than (=/n), the deflections are assumed to vanish.
Typical examples of the d.eflection patterne in the plane of the ringxp
are shown in flgures 3 and L o

CAICULATION OF STRATN ENERGY-

Strain Energy Stored in Rings

The strain energy stored in any one ring is

= (1/2) [(El)r/r3J f/n [wr + (égwr/acpz)}a ap (9)

If the value of w, 1s substituted from equation (T) and the strain
energy 1s summed up over all the rings, the followling expression is
obtalned:

= (1/2) (ai/ﬁ) J%‘(Ex)r sin® (/L) £ﬂ/n Egl{a?kl/aq@—]g s  (10)

where m 1s the total number of rings included in the wave length. The
integration yields a result in closed form. The same isg true of the
gummation if all the rings have the same bending rigidity+ In such a
cage the total strain energy U, stored in all the rings becomes

= (3/16) (ag/ri“)(m)r(m + M (1)
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when
m>1 : (11a)
and
= (1/2)(a§/r3)(EI)rM (12)
when
m=1 (122)
where .
M = Er + 10 053096<1 - 9n°) + 206. 01005(1 - bn )2 + 90.303387(1 - 9:12)2
- 18.095573(1 - w?)(1 - )

a.[- 9.0u77866(1 - ka2)2 - 1.50796&5(1 - o?)?

30.159269(1 - 22)(1 - 4n2) + 18.095573(1 - b2 )(1 - 9n2>:l

+ 'b[h-(l -m2) 4 2.k (1 - o) 4+ 113.60784(2 - 42)2 4 142.636690(1 - on2)?

241 - 2) (1 - %) - 3.68(1 - 12)(1 - 9n2)]

2[1 5707963(1 - n2)2 ;. 0212386(1 - bz )2 + 0.5654867(1 - 2)21
-[1 5707963(1 - n2)2+16.081+954(1 - ll—n2>2 + 5.08938(1 - on ,_)ej

a‘b[ A1 -2 (1 - u2) + 3.1 - 12) (1 - on2))] | (13)

+

+

4

+

+

+

Straln Energy Stored in Stringsrs

The strain energy stored 1.. the stringers because of bending
in the radlal direction is

_Z(l/z) (B0) gt ! <82w /ax2 (1k)

where the summation ls extended over all the stringera contalned in the
bulge. Substitutlon and integration yield

L
Ugtr., =:E:_(l/é)(EI)strr o2 ki(Qn%/i2>2 cos® (2mx /L) dx

©/
U

- (,(4/13) 2 ) 12 (B1) g1, (15)
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Both kl end (BI) str,. vary from stringer to stringer, (EI)strr

because the effectlve wldth of sheet to be added to the stringer section
changes. For thls reason the summation has to be evaluated numerically.

The straln energy stored in the stringers because of bending in the
tangential direction 1s '

Ustry =Z (1/2) (ET) strt‘/j‘(aewt/axg)? ax (16)

where the summetion is extended over all the stringers contained in the
bulge.. Substitution and integration yleld

Ustrt = (’rh/l‘ 3) &EZ k§ (E1) stry (17)

Because both ky; and (EI) vary from stringer to stringer, the
3 stry s

summatlion has to be evaluated numerically.

The strain energy stored in the stringer because of torslon 1s

v, =S (1/2)ee j: (/)2 @, ) ew)|* e a8

In this equation (1/r) (82wr>/(axbcp) 1s the unit angle of twist of the

stringer, and the summetion 1s extended over all the stringers contained
in the bulge. In the expression for the Saint-Venent torsional rigldity,

C = 0.1kt (18e)

because the test specimens were provided with square sectlion stringers of
edge length &a. Dlfferentiation glves

(agwg/(axacp) = agky(n/L) sin (2mx/L) (19)
where . T : i
k), = n[- a sin np - (3.22 - 3.6) sin émp - (1.8e - 2.4) sin 309
+ b cos n9 +-(6.4b + 7.2n) cos 2np + (5.4b + T.2n) cos 3nq3] (19a)

i1
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Hence the strain energy of torsion is

v, = @20/ T w2 (209

where the summatlon includes all the stringers contained in the bulge.
Because the varlation of the torsiomal rigldity with effective width ia
negligibly small, the factor GC was written before the summation sign.
The summation was carried out numerically.

Strain Energy of Shear Stored in Sheet

The shear straln energy in the panel is taken as the average
effective shear modulus Gef multiplied by the square of the average
shear strain o i1in the panei. The value of 7 18 calculated from the
displacements of the four corners of the panel. The total strain energy
of shear stored in the sheet then is -

Ugn = (1/2)>_ 786 T td (21)

The effective shear mocdulus depends upon the geometric and mechanical
properties of the panel and the average strain therein. Its value was
teken from the empirical curves established earlier at Polytechnic
Institute of Brooklyn Aeronautlical Isboratories and presented in
Pigure 24 of reference 6.

The average angle of shear 7 was calculated from the equation

7 (“?/Ll>(wf1,a T Vris1,g T rigat Wfi+1s3+l>

(- a"‘}/Ll>(w'bi,j T Weia1,3 T Vo1, T B, 3+1) (22)

where the first subscript refers to the circumferential location of the
corner of the panel and the second to the axial location, es shown in
figure 5. The velues of the factors o, and ay were calculated from
the equations

(1/10)(a/r) = (1/10) (27/8)
-1/2

o (23)

at,
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Substitutions yleld

m g-1 _ :
Ugn = (1/2) (£2/11)G0 2 O > (Gerp/o)1Rs (24)
3 1=0

where & 1is the number of stringer fields involved in the bulge, Q 18
a functlon of x only, and R is a function of ¢ only. The sum-
mation 5__ Q glves a result in closed form as follows:

}m—_—_ Qy -=§'Ii—_ {aine [(xj)/(m + l)] - gin® [n‘(:j + 1) /(m + l)] 2

J=0 J=0
w (1/%) (m + 1){1 - cos [(a,t) J(m + 1)] (25)
provided that
m>1 . (258)
When m = 1,
S a=2 | (25b)
The meaning of the symbol R 1s
R = [op(ly, - E1,04) - o (k3,1 + k3,1+1)]2 (26)

The values of kl,i: k1,141, k3,15 end k3 3,) are obtained from those of ki
and kg {equations (Ta) and (Ba)), respectively, by replacing the angle @

by 2x1/8 or 2(i+l)/S. As examples, X ; 8ad k34 ere listeds
kl,i =1+ a cos (2mmi1/8) + (1.6 ~ 1.8) cos (4mi/8)
+(0.6a - 0.8) cos (6mifs) + b ein (2mi/8) _ _
+(3.2b + 3.6x) sin (bmi/S) + (1.8b + 2.4x) sin (6mmi/8) (27a)
nk3’i - - (2mi/s)- a sln (2mi/S8) - (1/2)(1.6a - 1.8} sin (4mi /8)
- {1/3)(0.6a - 0.8) sin (6m1/8) + b cos (2mi/s)
+(1/2) (3.2b + 3.6m)} cos (bt /3) + (1/3)(1.80 + 2.4x) cos (6mi/S)
(27v)

the gummation of the R quentities indicated in eguation (24) wes
ecarried out numerically.
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WORK DONE BY EXTERNAT. FORCES

As was mentioned in the INTRODUCTION, the strain was asgsumed to
be distributed linearly over the sections of the cutout portion of the
cylinder. The force in each stringer was calculated as the product of
the strain, the elastic modulus, and the crose-sectional area of stringer
plus effective width of sheet. These forces were assumed to be the
external forces appllied to the stringers et the end of the axlal wave
length. Because of the reduction in the effective wldth of sheet on
the compression side of the cylinder the neutral axls 1n bending is
shifted toward the tension side. This shift was calculated and taken
into aoccount when the forces acting upon the ends of the stringers were
determined.

The distance between the polnts of .application of the forces
shortens when the stringers bend during the buckling process. This
shortening multiplied by the force 1s the work done by the force. The
total external work is the sum of all the work guantities calculated for
the individual stringers:

W= (1/2) ) B J: [(awr/ax)a + (awt/axf] ax (28)

vhere Py is the external force acting upon the ith stringer and the
summation is extended over all the stringers contained in the wave length.
Subgtitutions and integration yield

L

(1/2)&.22]?1 (:r/‘L)z(ki + kg)ﬁsinz (2mx/L) ax
(1/8)as (/)P g (Pi/PcI)(kl, 12‘ + k3’12> (29)

where P,,. 1s the force acting in the most highly compressed stringer.
The summation was carried out numerically.

CALCULATION OF BUCKLING LOAD

The buckling condition is

Up + Ugtr, + Ugtry + Uy + Ugy =W (30)
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where the values of the guentities must be teken from equations (11) or
(12), (15), (A7), (20), (2}), and (29), respectively. Equation (30) vas
solved for Pcr’ which 1s a multiplying factor in the expression for .

W, and minimized by meens of the following procedure:

A value of n corresponding to & circumferential wave length
extending over an integral number of stringer flelds wvas first assumed,
and an lntegral number was chosen for m + 1, the number of ring flelds
included In the axial wave length. On the basls of these tentative
values, M, k,, k3, and k) were computed. Next, P,,, was assumed.

This asaumption permitted the calculation of the effective width of
sheet anl conseguently of the moments of inertia of the stringers and
mede possible the determination of the wvalues of Geff/c'o from the graph.

The summations were then carried out. Substitution of the results in
equation (30) resulted in a polynomial p, of the second degree in a

and b In the left-hand member and another polynomial Pp of the second
degree in the right-hend member, Po mmltiplied by Pgr. Solution for Py
gave the fraction

pl(a‘!b)

For = 3,1a,5) (31

This expression for P may be minimized with respect to a and D

by setting
%%; ;ﬁﬁﬁ- (32)

The partial dlfferential coefflclents of Py and p are linear

functions of a and b. Equation (32) represents three connections
between Pspn, &, and Db. They were solved by a rapldly converging
trial-and-error method. Flrst, a value was assumed for P,.,

and b vere determined from the two llnear equations. Then the values
of a and b were substituted into the quadratic expression for P,

and a

The procedure was repeated wilth the ald of new assumptions for P,,, until
the value obtained was close enocugh to the assumed value.

Wher. the value of P or obteined in these calculations differed
substantially from the value assumed at the outset, the moments of inertia
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and the effective shear modulus had to be recalculated and the entire
procedure repeated. All the calculations were carried out for a number.
of different choices of n and m. The buckling loads corresponiing

to these different values were compared, and the smallest one was con-
sldered as the true buckling load. Details of the procedure may be seen
from the numerical examples in the appendix.

COMPARTSON OF THEORY AND EXPERIMENT

Numerical calculatlons were carried oul for the two arrangements
of stringers and three circumferential sizes of cutouts lnvestigated
in the experiments described in referenze L. Typlcal buckling patterms
obtained in the calculations are shown in figures 3 and b, and detalls
of the .numerical results are presented in table 1. Theoretical and
experimental bending moments at buckling are compared in figure 6.

The theory predicted bending moments at buckling which were, with
one exception, consistently highsr than those cbtained in the experi-
ments. Moreover, the deviations between theory and experiment increased
systematically wlth decreasing circumferential length of the cutout.
Straln-energy calculatliones are kmown to yield too high buckling loads
when the deflected shepe asgsumed differs from the actual shape of
distortions.

The circumferential wave length was predicted by theory with
satisfactory accuracy. In the axial direction the theoretical wave
length is greater than the ons observed. The devliation is glight in
the case of the l6-gtringer snecimens and large in the case of the
8-stringer specimens. Small changes in the axial wave length, how-
ever, have little effect upon the buckling load.

CONCTUSIONS

A strain-energy theory has been developed for the calculation of
the buckling load in general instability of circular reinforced mono-
coque cylinders which have a side cutout and are subJected to pure
bendling. When the thsory was applied to the test cylinders of part IV
of the present series of investigations, the followling percentage
deviations from the experimental values were obtained: 54.8, 32.k4,
and. 16.1 percent for the 45°, 90°, and 135° cutouts, respectively, of
the 8-stringer series; and 47 4, 30.8, and —3.2 percent for the h5 s

90 and 135° cutouts, respectively, of the 16-stringer seriles,
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The authors belleve 1t would be desirable to conbtinue the theoretical
investigations on the basis of more refined assumptions for the deflected
shape at buckling. Straln-energy calculations are known to yield too
high buckling loads when the deflected shape assumed differs from the
actual shape of dlstortions. More experimental work is also needed for
a better understanding of the general instability phencmenon of reinforcdd
monocoque cylinders having a side cutout:-

Polytechnic Imstitute of Brooklyn
Brooklyn, N. Y., December 26, 1946 -
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APPENDTX

NUMERTCAI. EXAMPLE

Detalls of the numerical work performed in connection with the
determination of the buckling load for a test specimen are shown. The
cylinder considered is cylinder 39 of reference 4. Pertinent data to be
referred to are listed as follows:

Radivs, r, in. . . . « . . . . B o
Disgtance between adjacent rings, Ll: 1. . o e e e e e e e .. . 6.k29
Width of panel measured along circumference, d, in.. . . . . . . . 7.85h
Angle subtended by cutout, &, 88 =+ « « ¢ + o ¢ & o ¢ o o e . . . U5
Total number of stringers in cylinder, S . . « .+ ¢« + « « « + & 8
Stringer cross section, In.. . . « ¢« ¢« ¢ ¢ ¢ ¢ e 4 e e s . e 3/8 x 3/8
Ring cross section, IN.. « v o « o o o 272 « o 2 o « » « « + « 3/8%x3/8
Young's modulus, E, pel . . . &+ o « ¢ ¢« ¢ 4 4 s 4 . . . . 10.5% 106
Shear modulus, G, Pl . . . ¢ ¢« ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o s s o o « 3.9% lO6
Shear modulus of sheet covering at zero compressive 6
® load, Gg, P8l . . . . e 4 s s s e 0t e e e e e e 0 e . 2 3.9%10

Thickness of sheet covering, t, in.. « « « . ¢« « « « « « + « « . . 0.012

Moment of inertia of ring cross section and 1ts effective
dth of sheet for bending its own plane, I, 6
(1/2) (3/8) {(1/8) + (0. 012]3 wh, .. ... L .. .. 80.35 x 10~

Once a value of &, the number of stringer fields involved 1in
failure, is chosen, 1t is possible to reduce the expressions denoted by
M, Ik 3, end k) defined by equations (13), (7a), (8a), and (192),
respectively, to arithmetic polynomlals in & and b. The one for M
is obtalned by simply inserting the values of n = (S/2s) and 1ts powers
into equation (13). For s = 3, the result is:

M X 1072 = 0.0020877a2 + 0.0131007b° + 0.19654065
+ 0.00286815ab + O. 008h369a + 0.1010576b (33)

For the evaluation of kl, and kh it 1s convenlent to set up a

k

3’ .
tabular arrangement. For g8 = 3 this arrangement takes the following
form: .



-~

5 jConstanl jcos {xif3)jcos (2ni/3) | cos (3xi/3)| 2ni/8 .| sin (xi/3) | ein (2x1/3) |[ein (3xi/3)
0 1 1 1 1 0 0 0 0
1 1 5 -.5 -1 . 785398 8660255 8660255 | 0
2 1 -. -.5 1 1.570796 8660255 | -.8660255 | O
Multi- a 1.6e- 0.68- b 3.2b+ 1.8+
pliers 1 1.8 0.8 11.3097336 | 7.5398e2h
for kl
Multi- 0.75b 1.2+ 0.45b+ -0.T5a -0.6a+ -0.15a+
pliers 4.2511501 1.8849556 |-1 0.675 0.2
for k3
Multi- 1.333...p] 8.5333...b+| T7.2b+ <1.333...a| -k.2666...a+| -2.h4a+
pliers 30.159280% | 30.15928%h k.6 3.2
for kJ+

For the value of the index 1 = O denoting the position of the stringer at the edge of the cutout,
the polynomial for kj In a and b is found by mltiplying the expressions appearing in the first

row below the double line (labeled multipliers for }:1) by the numbers in the corresponding colimm

ligted in the first row (labeled 0) and adding like quantitles of the results of the products. In a
gimilay manner the polynomials for 1 =1 and 1 =2 for k‘.L are obtained, as well as the three

values each for k3 and kh' The results are presented In tabuler form as follows:

QT
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TABLE 2
i ky kg k),
ol 3.2a-1.6 2.4b + 6.1261056 17.0666...b +60.3185787

1| - 0.9a + 3.673071b + 12.4945177

- 1.1691344a - 0.675b - %4.2063614

- 4.849728a - 10.8b - 41.0820117

2| - 0.7a - 1.9052561b - 8.6945177

- 0.1299038a - 0.525b - 2.3909827

2.5403415a + 2.2666..d + 10.922722L

The functions (1«:1,1 - kl,1+l) and _(k3’-i+1 + k3,i) can be determined with the aid of table 2 by

simply subtracting or adding the polynomials of adjacent rows in the first two columms of the table.
It mist be remembered that k; = 0 and k3 = 0 when 1 =3 since the deflections have been assumed to

venish at the third stringer, where 1 = 3. If «, is taken as 0.0785 and a

R = (kl,i - kl,1+l)°'r - (k3,1+l + k3,1)a.t becomes for each field:

TABLE 3

¢ 88 -0.5, the function

1th field R
1 -0.2625532a + 0.576826b - 0.147112
2 -0,6652272a - 0.164686b - 1.6344854
3 -0.1199299a - 0.4121398p - 1.878358
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Before the atringer bending straln energy, shear straln energy, and external work can be
evaluated, 1t 1e neceasary to assume first a value of the buckling load mo that the mumerleal
values of the stringer moments of insrtia, effective shear modulus, and effective area may be
determined. Since the lagt three quantities are functlons of the norms) strain acting in the
axial fibers at buckling, a value of the critical strain 1s assumed. Also in order o locate

the position of the neutral axis at failure, the critical strain must be mown. In the present

example, the critical straln is gueased to be 21 X 10'1*. ‘Then the shift of the nsutral axls,
calculated by taking first momente of area, is round to be 0.07, expressed in percant&gﬁ of
the radiua. The followlng table contains the afore-menticned 1tems for e = 2] X 10~

and 5/r = 0.07 AL

TABIE 4
Wl @ e ® 0 ®@ | @ |® | ©
1 ¢ ow I T i le.te | a A __(s/e
gtr, stry 3.3 offf/ "o off off maex

0 | 8.884x 107" 4.290 [ 22.15 X 1074 435 x 10~ |2.69 x 10% | 0.633 | c.166k 0.070k

1 | 19.506 2.648 1 23.685 200 . 5.91 49 1724 L1601k

2 | 19.506 2.648 | 23.8% 200 5.91 19 172k 1601k

Colwm (1) refers to the stringer station. Columm (2}, the strain at these locatioms, is

directly proportional to the distance from the neutral axis, since & linear strain distributlon

is assumed. Column (3) is the effective width of curved sheet calculated from equation (30)
of reference 7. Colums (4) amd (5) give the moments of inertia of the stringers plus their
effective width of curved sheet. Thesms are calculated from equations (34) and (36) of

o -~ 7 A amamd el A LIPS T | I iy [N B DU R F 4 T DD
TeieTeniCe [, Wiul gpeCliatl CONBLUBIATIONE 10r tie edge BLL1LFESOT DOBCAUES it has off
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on only one side. Column (6) indicates the ratio of the actual strain
in the sheet when the monocogue cylinder buckles to the buckling straln

of a panel of sheet of 3.30 X 10')+ as glven in reference 6. These values
are needed to obtaln the percentage reduction in the value of the shear
modulus recorded in figure 24 of reference 6 and presented in columm (7).
Adding to the cross—sectionsl area of the stringer, 0.140625 squere inch,
the area of the effectlve width of sheet which is 0.012 times a velus of
column (3) yilelds a value of effective area shown in colum (8). The
entries in column (9) can be computed with the aid of columns (8) and

(3).

The next step in the calculations is to assume a value of m + 1
the number of ring flelds involved In failure. It 1s then posslble to
write the equation for the buckling condition in terms of the parameters
a and b. It 1s convenlient to multiply the numerator and denominator

terms of equation (31) by [Km +l)/%] X th and. to solve for Gmax % 10%

Instead of ¢ ;s thls procedure requires that each strain energy be

miltiplied by [(m+l) /‘E] x 10% and that the externmal work be multiplied

by (mD@]ka'ﬁmm+l=n,fmmwmﬁmsun,ﬂﬂ,ﬁﬂ,
(20),” (24), and (29), there results: '

U, [(m +1) /E] x 10% = a2 I:(3/16)(11)2(80.3§ X 10'6) /103]m x 10*

= ai 1822.94% (M.x 10-5) (34)

where M X 1072 1s glven in equation (33).

Us‘ber +1) ffg x 10% = a% [’fh/(6-429)3(11)2] [Zi ki'Istrr""Zi kglstrt] x 10"

a2 ; [(30.298 Istrr)k?_ + (30.298 Istrt>K§] (35)

where the indicated summatlon can he evaluated by teking the sum of the
products of the squares of the polynomials for both k; and K3 appearing

in table 2 and 30.298 times the entries for corresponding values of 1
listed in columms (4) and (5) of table 4. For this purpose it is help-
ful first to calculate and record the quadratlc polynomials in a and D



vhich represent the squares of ]rj_ and k3 for each value of 1. Theee exprossions are not shown %

here.
i+ 2] 20t E@/ﬁcm)z(s 129)| (3.9h09) (0 avenes)( & ) x 20"

i

= ao(o.0391r()( ) kh) _ (36)

i

vhere the summaticon is performed by squaring and adding the values of kh_ glven in table 2 for each

value of 1. |

Ug [(m + 1) /8] x 10* = &7 0.012) (7.854) /(8) (6.429) ] (3.9/10.5) [(11)9(1 - cos %)] X

[; (Geff/ho)'ré x 10" = g; E3o'57((};aff/ﬁo)]nf (37

vhere the summation cen be deduced by

a0una
130.57 times the proper value of Geff/
products. A table contalning the terms 1

il L i wa e Vg

be found in column {7) of table 4, and adding all such
8 needed. It 1m not glven here. And finally,

o
n R 1

(m -;- 1) /E] x 10% = & [ﬂe/(h) (6. 429:[ x 10 [Z Aeff('/' )(kl + kg)]
5

i 2 2
_ =a ¢ E0-38379)Aeﬂ(¢/¢m)](k1 + kg) (38)
vhers the sumation is carried out by finding for each value of 1 the sun of the squares of k; and

These quantlties are evaluated in comnection with the determination of the atringer bending strain
mitiplying this eum by 0.38379 times the corresponding velue appearing in columm (9) of
table ﬂ, and adding ell such products.
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In the present numerical example €., X 10k has been assumed to

be 21 for the calculation of the position of the neutral axls, effectlve
widths of-sheet, moments of . inertla, and effective areas. The mame value
is substituted into equations (40) end (41). The values of a and b are
found to be '

a = -3.4349
(42)
-b = "1 07)4'25,'"
When thege results are lnmerted into equation (39), € nax X 10)'L becomes
22.44, Experience has shown that the difference between the value
€ = 22,44 X 10'}+ obtalined and the value € =21 X lO‘l+ agsunmed

max max

is small enocugh to make a repetition of the calculations unnecessary.
The changes In the values of the effectlve widths, moments of inertia,
location of neutral axis, and effectlive shear modulus resulting from

the increase in €., from 21 X 10"% to 22.44 X 10°% would have a
negligible effect upon the calculated buckling strain. Hence

2044 x 10°% may be téken as the critical buckling strain.

The critical moment 1s computed from the relation

MCI‘ = Z Pl

where P 1s the force in a stringer at buckling, d 1is the distance
of the stringer from the neutral axis, and the summation must be taken
over the entire cylinder. ZExperessed In terms of stralin, thias relation

is
Mo =Z<EAeffe>d. = [EGM/(r + 8)]Z Aeffd‘g (43)
aince |
€ = lmaxd/(r + B)

For a oritical strain of 22.44 X 107%, M. becomes 174,960 inch-pounds.
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TABLE 1

TABULATION OF RESUL!

8 a Mtheor Mexp Percent 8/r € mex 8 [(m+1) -a -b
(deg)| (1n.-1b)| (in.-1b) | Difference

8 bs | 174,960 | 113,000 54.8 0.07T| 22.4k x 2077 | 3 7 | 3.4349} 1.7425
90 | 1hk2,890 | 107,900 32.4 07| 18.67 n 10 | 2.7724| 2,746k
135 | 116,070 | 100,000 16.1 05| 164k L 10 | 2.8213] 2.8887

16| L5 | 342,680 | 232,500 h7.h 0.05| 24.83 6 7 | 2.3523] 3.1193
90 | 225,690 | 172,600 30.8 .0k} 16.76 6 7 | 2.34k9] 3.1744
135 | 16k,k70 | 169,900 -3.2 Oh| 14,13 6 7 | 2.3471] 3.2175

gc
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Figure 1.- Typical monocoque cylinders,
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Figure 2,- Deflected shape.
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Flgure 3.~ Deflected shape of ring in it8 own plane (according to
theory, exaggerated). Cylinder 37; 8 stringers; 809 cutout,
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Figure 4.- Deflected shape of ring in its own plane (according to
theory, exaggerated), Cyllader 38; 16 stefngers; 45° cutout,
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Figure 6.- Deformations of panel corners with notation for shear strain calculations.
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Figure 6.- Comparison of calculated and experimental critical moments.
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